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Abstract— UV radiation has been used as a disinfection
strategy to deactivate a wide range of pathogens, but existing
irradiation strategies do not ensure sufficient exposure of all
environmental surfaces and/or require long disinfection times.
We present a near-optimal coverage planner for mobile UV dis-
infection robots. The formulation optimizes the irradiation time
efficiency, while ensuring that a sufficient dosage of radiation
is received by each surface. The trajectory and dosage plan
are optimized taking collision and light occlusion constraints
into account. We propose a two-stage scheme to approximate
the solution of the induced NP-hard optimization, and, for
efficiency, perform key irradiance and occlusion calculations
on a GPU. Empirical results show that our technique achieves
more coverage for the same exposure time as strategies for
existing UV robots, can be used to compare UV robot designs,
and produces near-optimal plans.

I. INTRODUCTION

The Covid-19 pandemic has encouraged worldwide inno-
vation in methods for reducing the risk of disease trans-
mission in hospitals, public transportation and other public
spaces. One promising technology is ultraviolet (UV) disin-
fection of surfaces, which has strong antimicrobial properties
particularly in the UVC (200 nm to 280 nm) spectrum. UVC
has long been known to deactivate a wide range of pathogens,
such as Coronaviruses [1, 2], bacteria and protozoans [3].
Existing UV delivery approaches include air and water
disinfection systems used in filtration and waste processing
plants [2], as well as surface disinfection systems in the form
of wands [4], overhead lights, pushcarts, and mobile robots
carrying high-power UVC lamps [5]. Hospital testing [6]
has shown that a combination of standard manual cleaning
followed by UVC surface irradiation has shown to be more
effective in disinfecting environments than manual cleaning
alone.

Dosing is an important factor in effective use of UVC, and
is usually performed by following manufacturers’ guidelines.
Although some UV disinfection robots also feature sensors
that measure reflected radiant energy as an approximation
of surface dosage, existing methods fail to disinfect certain
parts of the environment [7]. Two pitfalls are noted. The
radiant fluence received by a surface is affected by the
inverse square law, so fluence drops quickly as distance
increases. Second, occlusions also affect the delivery of
light into back-facing or shadowed regions. These effects
are illustrated in Figure 1, which shows a simulation of
the irradiation of a hospital infirmary under a static UV
tower, demonstrating sub-standard disinfection of bedsides
and occluded equipment.

We present a method for planning optimal trajectories of
a mobile UV disinfection robot with dosing constraints. Our
optimization can be configured to prioritize coverage of high-
touch surfaces under a fixed time budget, or to guarantee

Fig. 1: Comparison of a standard stationary mobile robot (left)
against an optimized motion (right). Robot carries a tower light.
Surfaces are color coded by UV fluence received, with red indicat-
ing 0 J/m2 and green indicating 280 J/m2 or higher. A stationary
light is unable to disinfect much of the environment after 30
minutes, while a mobile robot following our optimally computed
trajectory (in orange) achieves almost complete coverage. (Best seen
in color)

the eventual full disinfection of all surfaces reachable by
irradiation. The robot’s movement must be collision-free
while conforming to the dosing constraints. We solve the
problem by building a probabilistic roadmap in the robot’s
configuration space, and then finding a tour of a subset
of configurations that optimizes the dose. The coverage
problem on the roadmap can be cast as an NP-hard Mixed-
Integer Linear Programming (MILP), but we propose an
approximate two-stage solver that uses a Linear Program
(LP) to find dwell times followed by a Traveling Salesman
Problem (TSP) to find the tour. Experiments show that
our solver is orders of magnitude faster than MILP with
a loss of less than 3% of optimality. Moreover, dosage
planning requires determination of an irradiance matrix that
considers visibility and exposure of every surface patch from
each candidate UV light pose, and we propose an approach
that efficiently calculates this large matrix using a Graphics
Processing Unit (GPU).

II. RELATED WORK

Motion planning for UV disinfection bears a resemblance
to two well-studied problems: coverage and inspection plan-
ning. The goal of coverage planning [8, 9, 10, 11] is for every
point in the freespace to be covered by the robot, while the
goal of inspection planning [12, 13, 14, 15, 16] is for every
point on an object surface to be visible from some point on
the robot trajectory. The disinfection planning problem intro-
duced in this paper adds an additional layer of complexity to
inspection planning, where every point in an object surface
must receive a certain amount of irradiance exposure. This
scenario induces a joint problem of robot trajectory planning
and disinfection time assignment. Compared with standard
coverage and inspection planning, UV disinfection is applied
routinely in healthcare facilities, public spaces, and food



industries, and can take tens of minutes to ensure enough
dosage. Therefore, achieving (near) optimality in reducing
the disinfection time for a known environment, which is
the focus of this paper, is more important than adapting to
unknown environments or online re-planning as done in [13,
11].

Besides robotics, UV disinfection planning can be under-
stood as an effort to model and control light transport. In
this aspect, there is overlap with similar efforts in the field
of radiation dosage planning [17, 18, 19, 20], rendering of
Lambertian surfaces using boundary element method [21,
22, 23, 24] (otherwise known as radiosity), and optimization
of light placements [25, 26]. The radiation dosage planning
problem has the same goal as our problem, ensuring the
delivery of sufficient amount of dosage to target volumes. An
additional goal is to reduce the dosage as much as possible
for the organs at risk. However, since geometric information
of human organs is difficult to acquire, these methods are
mostly heuristic and sub-optimal. Radiosity is used to only
model light transportation, reflection, and absorption. Of
particular interest is GPU-accelerated radiosity [23] where
the occlusion map is computed using GPU rasterization. A
similar technique is used in this work, while indirect light
reflections are ignored by our method as their contributions
are assumed neglectable. Other works on lighting optimiza-
tion for urban design or scientific data visualization [25, 26]
also considers moving light sources, but these lights are fixed
after the design phase.

III. UV DISINFECTION TRAJECTORY PLANNING

Here we formalize the path planning problem for targeted
UV disinfection first as a continuous, infinite-dimensional
trajectory optimization problem, and then as a discrete ap-
proximation.

A. Continuous Formulation

Let E ⊂ R3 be the boundary of the environment, which is
the surface to be disinfected. The disinfection is performed
using a mobile robot equipped with a UV light, where C is
the robot’s configuration space and Cfree is the freespace.
When the robot assumes any collision-free configuration x ∈
Cfree, each infinitesimal surface patch ds ∈ E will receive
a certain amount of radiative fluence per second. We model
the radiative fluence distribution using a so-called Poynting
vector function I(x, ds), such that the infinitesimal surface
patch ds receives the following irradiance:

Ids(x) = ⟨I(x, ds), n(s)⟩, (1)
where ds is the infinitesimal surface patch with outward
normal n(s) and ⟨●, ●⟩ is the inner product. Note that
I(x, ds) already encodes the effects of light mirror reflections
and occlusions by the environment. For instance, in the
case where there are full occlusions before reaching ds,
this vector is zero. We denote τ(t) ∶ R ↦ Cfree as the
trajectory in the robot configuration space parameterized in
time t ∈ [0, Tfinal]. The radiant fluence (also known as
radiant exposure) of an infinitesimal surface patch ds from

a trajectory τ , denoted by µds, is described by:

µds(τ) = ∫
Tfinal

0
Ids(τ(t))dt. (2)

We define the minimum-time, continuous path planning
problem for UV disinfection as:

argmin
Tfinal,τ

Tfinal

s.t. µds(τ) ≥ µmin(ds) ∀ds

∀t ∈ [0, Tfinal]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(t) ∈ Cfree
τ̇(t) = f(τ, τ̇ , u)
∥u(t)∥ ≤ umax

,

(3)

where f(τ, τ̇ , u) encodes the robot dynamics , u(t) is the
control signal, umax is the control limits and µmin(ds) is
the minimum disinfection fluence (dose) prescribed to the
surface. The prescribed dose can be surface-dependent (e.g.,
to deliver more radiation to high-touch surfaces), but we set
a constant µmin for notational simplicity. Eq. 3 is intractable
due to the infinite number of constraints and the integral in
Equation 2.

B. Discrete Formulation

Next, we formulate a discrete counterpart of (3). The
surface E is discretized using a simplicial complex with
N triangles, {si∣i = 1,⋯,N}. The robot can only take
a discrete set of K configurations {x1,⋯, xK} ⊂ Cfree.
Each configuration xk is called a vantage configuration. To
simplify total irradiance calculations, we assume that the
light source stops at each configuration xk in its trajectory for
some dwelling time, denoted as tk ≥ 0, and emits no radiation
during the transition between vantage configurations. Let t
be the vector of K dwell times. We then discretize (1) and
(2) as:

Ii(xk) = ∫
si
⟨I(xk, ds), n(s)⟩ds, (4)

µi(t) =
K

∑
k=1

Ii(xk)tk. (5)

Suppose there exists a network of paths between configura-
tions that satisfies kinematics and dynamics constraints. Let
dkl ≥ 0 be the distance along the network between any xk and
xl, with dkl =∞ if no path connects them. We then formulate
the discrete version of (3) as a path subset selection problem.
We introduce binary variables zkl ∈ {0,1}, each indicating
whether the path dkl is used in the final path, and a vector
z collecting each indicator. Then the discrete version of (3)
is defined as:

argmin
t,z

K

∑
k=1

tk +
1

vmax

K

∑
k=1

K

∑
l=1
dklzkl

s.t. µi(t) ≥ µmin ∀i = 1,⋯,N
z connected
tk > 0 iff zkl = 1 or zlk = 1 for some l.

(6)

The last two conditions are consistency constraints, stating
that the selected paths form a simply connected path, and
the second ensures that the robot can only dwell on vantage
configurations that are part of the selected path.



IV. PROPOSED SOLUTION

In this section, we propose a novel approximate algorithm
to search for near-optimal coverage plans. The main steps of
our approach are listed below:

1) Select vantage configurations {x1,⋯, xK} (Sec. IV-A).
2) Compute network R of paths between configurations

using a PRM-style approach. Retain subset of reachable
configurations. (Sec. IV-B)

3) Compute irradiance matrix Ii(xk) (Sec. III-B)
4) Solve a LP for optimal dwell times t (Sec. IV-D)
5) Solve a TSP for a tour of all configurations xk for which

dwell time is nonzero, that is tk > 0 (Sec. IV-D)
6) Execute the tour, stopping for time tk at each visited

configuration xk
We remark that in our extended report [27], Eq. (6) can be

formulated as a Mixed Integer Linear Program (MILP). As
vantage configurations grow increasingly dense and paths in
the network R approach optimal paths, the MILP solution
will approach the optimal solution to the original continuous
problem (3). However, MILPs are NP-hard, and our system
sacrifices optimality with a two-stage LP+TSP approach.

The LP first finds an dosage plan, in the form of dwell
times to be spent at each vantage configuration, that is opti-
mal assuming that the robot can instantly “teleport” between
configurations. Second, the TSP finds the minimum-time
traversal of the configurations with non-zero dwell times.
Assuming that the robot is sufficiently fast that irradiation
is the limiting step, this strategy will produce near-optimal
results.

Another issue to be addressed is that the integral in (4)
does not have a closed form. We quickly compute an approx-
imate irradiance vector from every vantage configuration and
assemble them into an irradiance matrix using a GPU-based
visibility check.

A. Vantage Configuration Selection

We first uniformly select a set of light positions in the task
space, giving a superset {y1,⋯, yK′} of K ′ light positions.
For each light position, we solve the inverse kinematics
problem for each robot IK(yk) = xk and insert xk into
the vantage configuration set if a collision-free IK solution
can be found. During IK feasibility computation, the robot’s
geometry is dilated by 5 cm to discourage the use of “coiled“
configurations, since these induce harder planning problems.
The selection scheme of {y1,⋯, yK′} is robot-dependent. If
the robot is able to move in 3-D, then they are drawn from
an uniform grid in the bounding box of E in R3, but if the
robot is constrained to 2D motion, like a mobile base, they
are drawn from a gridding of the floorplan of E in R2.

B. Roadmap Computation

This component creates a PRM [28] to attempt to connect
the vantage points {x1,⋯, xK} with feasible paths. The
PRM is an undirected graph R = (V,E) consisting of
configurations q ∈ Cfree, called “milestones“, and edges
(a, b) ∈ E between milestones a and b are straight line paths

(a) Rasterize
(Geometry Shader)

(b) Power Emission

Sum( )=I1(Xk)
Sum( )=I2(Xk)
Sum( )=I3(Xk)

s1

s2
s3

Triangulated
Environment x

(c) (Compute Shader)

k

Triangle Index

Fig. 2: Illustrating the GPU-based irradiance calculation. (a): The
triangle index is rasterized into an environment map using geometry
shader. (b): The power emission e(i, j) is precomputed. (c): The
operation F [T [i, j]] += e(i, j) is performed for all pixels on a
compute shader. (Best seen in color)

that are required to lie completely in the free space, that is,
ab ∈ Cfree.

We construct R with the following sampling scheme: 1)
Add {x1,⋯, xK} as initial milestones of the PRM and try to
connect pairs of nearby milestones if the edge between them
is feasible. 2) Sample a some number of configurations uni-
formly at random, and configurations near milestones with a
given radius. Connect nearby pairs of milestones with edges
if feasible. 3) For pairs of neighboring vantage points that lie
in different connected components of R, add more samples
near this edge. This latter approach helps the planner focus
its sampling to narrow passages in configuration space. Edge
feasibility checking is done by checking the configuration
space line segments and for collisions at regular intervals.
The distance between two configurations is calculated by
the length of the robot’s end-effector trajectory induced by
the interpolation.

After R is computed, vantage points that are not in the
largest connected component are discarded. For the remain-
ing points, the shortest paths in R between all pairs (xk, xl)
are computed to form the distance matrix dkl.

C. Discrete Radiative Fluence

We approximately calculate the radiative fluence matrix
with entries Ii(xk). Note that a typical environment in
3D contains millions of triangles (N ) and we will sample
tens of thousands of potential vantage configurations (K).
Therefore, the matrix size Ii(xk) is huge and its calculation
can typically become the bottleneck. We provide a GPU-
based implementation that can calculate each column I∗(xk)
in milliseconds.

The irradiance is a measure of the rate of radiant exposure,
and is given in the units of watts per square meter. We first
describe the simple case where the robot is a point light
source, i.e. X = R3. We assume that reflected light is not a
major source of illumination, so that the irradiance density
received by the infinitesimal patch ds is given according to



the inverse square law:

⟨I(xk, ds), n(s)⟩ =
⎧⎪⎪⎨⎪⎪⎩

0 ds visible from xk
P ⟨s−xk,n(s)⟩
4π∥s−xk∥3 otherwise,

(7)
where P is the power (or radiant flux) of the light source
and s is the location of the infinitesimal surface patch. A
patch is considered visible only if < y − xk, n(s) >> 0 and
no other surface lies closer to xk along the ray y − xk.

If no other triangles are in the way from xk to the entire
triangle si, then the irradiance can be calculated according
to [29], i.e. the integral of Equation 4 has closed form
solution. However, when occlusion occurs, no closed form
solution can be found for the per-triangle irradiance. Instead,
our GPU-based implementation calculates the irradiance
Ii(xk) by rasterization. This roughly follows the pipeline
for radiosity calculations used in computer graphics [30,
23] disregarding Lambertian reflectance. Our implementation
(Fig. 2) is comprised of the following steps:
● The scene is rasterized using a standard graphics pipeline,

with the camera centered at xk. Each triangle’s index
is rendered into the pixel buffer T bound to a cubemap
texture (the visibility cube) using framebuffer object and
a geometry shader [31]. In the meantime, a Z-buffer is
used for visible surface determination. After rasterization,
we store the value T [i, j] for each pixel (i, j) on the
image plane. T [i, j] is the index of the closest triangle
intersecting the ray from pixel (i, j) to xk. A void pixel
indicates that no triangle is occupying the pixel.

● For each pixel T [i, j] containing a visible triangle, the
amount of power e(i, j) emitted over the solid angle
subtended by the pixel is calculated using [29] and ac-
cumulated into a Shader Storage Buffer Object (SSBO)
denoted as the triangle buffer F . In particular, the operation
F [T [i, j]]+ = e(i, j) is performed for each pixel (i, j)
in a compute shader [32] using the parallel prefix-sum
algorithm [33]. The accumulated value for each triangle
is the radiant flux, which measures irradiance integrated
over the non-occluded area of the triangle.

● The radiant flux F [i] is divided by the area of each triangle
to obtain the mean irradiance Ii(xk) = F [i]/∣si∣.

Because this process will be performed repeatedly, the power
emission e(i, j) for each pixel is precomputed and stored in
a separate texture of the same dimensions as the rendered
buffers, denoted as E, so that it can be retrieved with a single
memory lookup. A note-worthy caveat of our method is the
use of mean irradiance Ii(xk) = F [i]/∣si∣ to replace the true
uneven irradiance distribution within a single triangle, which
can be remedied by having more finely discretized meshes.

Non-Point Light Sources: Our procedure to compute
Ii(xk) can be naturally extended to non-trivial light source
shapes, such as an omnidirectional cylindrical light source. In
those instances, the surface of light sources can be approx-
imated by a set of evenly distributed point sources, where
each point source emits an equal fraction of the light’s total
radiant power. The total radiant flux is accumulated for each
point before dividing by the area of each triangle to obtain

the irradiance. More advanced shader programs such as [34]
can also be used to approximate the continuous integration
of light contributions along the light source’s surface area on
GPU. For light sources with uneven irradiance distribution,
such as shielded or mirrored lights, we can replace the power
emission texture E with a precomputed custom distribution.

If the light source is not standalone but mounted on a
robot, then the position of the light source p is determined
by its forward kinematics, which is denoted as p(xk) and
plugged into Equation 7 in the place of xk, arriving at
I(p(xk), n(s)).

D. Approximate Two-Stage Optimization

At this point, all related variables of Equation 6 have been
calculated. We proceed by relaxing all zkl = 1 and derive our
first linear program in the following form:

argmin
tk

K

∑
k=1

tk

s.t. µi ≥ µmin ∀i = 1,⋯,N,
(8)

A potential issue with Equation 8 is that it does not account
for partially infeasible problems, which frequently occur in
practice because some triangles sk are totally invisible from
all vantage configurations. In these cases, Equation 8 will
report infeasibility and return unusable solutions. Instead, we
propose the following relaxed LP that always returns feasible
solutions:

argmin
tk,σk≥0

K

∑
k=1

tk +
N

∑
i=1
piσi

s.t. µi + σi ≥ µmin ∀i = 1,⋯,N
K

∑
k=1

tk ≤ Tmax,

(9)

where pk denotes the infeasibility penalty of a triangle sk
and σi is a slack variable allowing all constraints to be
satisfied in the worst case. We further constrain the time
budget for disinfection to Tmax. With large penalties pk >
∥I∗(x∗)∥F and sufficiently large Tmax, LP solver tends to
set all σi = 0 and Equation 9 is identical to Equation 8. When
some surfaces are totally invisible or disinfection cannot be
accomplished within the time budget, the LP has to set σi > 0
for some i and take penalty piσi. For prioritized surface
patches si, a larger pi should be used so the LP tends to
avoid positive σi.

To solve Equation 9 we leverage the large-scale interior-
point algorithm implemented in [35]. We then solve the TSP
problem to find {zkl∣tk > 0 ∧ tl > 0}. While this TSP is NP-
hard, it is solved over a much smaller set of candidate paths.
In addition, since it fits the traditional TSP formulation,
we are able to leverage polynomial-time approximate TSP
solvers, such as [36], which have near-optimal performance
for relatively small euclidean TSP instances as the ones we
encounter. Once the tour is found, the final disinfection tra-
jectory is obtained by linearly interpolating in configuration
space along the edges of the roadmap.

V. EXPERIMENTS

Our experiments aim to answer the following questions:



1) How much better is the coverage of an optimally
planned disinfection trajectory vs a single-point strat-
egy?

2) How large is the optimality penalty incurred by solving
the problem sequentially vs using an optimal MILP
formulation?

3) How do different robot designs compare in terms of
maximum disinfection coverage and efficiency?

We use a simplified 2.5D experiment to test questions 1 and
2, and a realistic environment in 3D for question 3.

In each experiment, all surfaces require a minimum disin-
fection fluence µmin = 280 J/m2, which is a conservative
estimate of the necessary fluence to induce a 3 log10
reduction in infectivity of SARSCov2 [2]. In addition, the
light is assumed to have a constant radiant flux, P, of 80 W
and that the max speed of all robots is 0.5 m/s.

A. Comparison with static illumination

First we evaluate disinfecting the walls of a 5m×5m empty
room as a 2.5D problem. Walls are 2 m meters tall and a
spherical point light source is used. We consider a discretized
version of the room where each wall is subdivided into
fixed-length subsegments, and irradiance from a point can
be calculated analytically for rectangles [37]. We consider a
static illumination strategy that places the disinfection light
to have maximum coverage over the obstacle space, allowing
it to irradiate the surfaces for as long as necessary to fully
disinfect its visible surfaces. In our method, we treat the
robot as a cylindrical base of radius 10 cm, and constrain
the movement of the light to a plane at height 1 m. Vantage
points are sampled along a 0.1 m grid. The static method
takes 143.7 minutes to reach full room disinfection, while
ours does so in 95.6 minutes, including movement time
between vantage points - the contrast between solutions is
illustrated in Figure 3

Next, we randomly generate 25 2.5D rooms in a 4 m×4 m
area and with 2 m tall polygonal obstacles. Each world
contains a random number of obstacles between 7 and 19,
with each obstacle randomly generated by scaling, shearing
and displacing regular polygons. Visibilities of each segment
from a given vantage point are determined by creating a
visibility graph amongst vantage points and segment mid-
points [38]. Figure 4 shows the output for one example.
Note that for our method, all segments are covered, and
few segments are overexposed. Figure 5 (a) shows results
averaged over all rooms, indicating that our proposed method
consistently disinfects 100% of the environment, whereas the
optimal static illumination only disinfects 35%. Moreover,
to disinfect the visible segments, static illumination requires
approximately 2 orders of magnitude more time.

B. Comparison against MILP formulation

Next, we compare the two-stage scheme and the glob-
ally optimal MILP formulation described in our extended
report [27]. We limited the point robot to travel along a 10x10
uniform grid of waypoints (note the 0.4 m spacing is coarser
than the 0.25 m experiments above, since MILP performance
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Fig. 3: Empty room disinfected by the best stationary point (red
dot) and by our method. Each surface is colored by its received
fluence, and the optimized trajectory is drawn in red. (Best seen in
color)
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Fig. 4: Same room disinfected by the best stationary point (red dot)
and by our method. Each surface is colored by its received fluence
and the trajectory is drawn in red. (Best seen in color)

degrades sharply with the size of the problem). On 15 of the
random 2.5D rooms, the MILP failed to converge within
24 h of computation, so we exclude these examples from the
remaining discussion. These results are illustrated in Figure 5
(b). Columns 1, 2, and 4 are normalized to the LP+TSP
results. Observe that the dwell times and disinfection times
are nearly identical, with less than 3% difference between
the two-stage approach and the optimal solution. Dwell
times take approximately 90% of total disinfection time, and
the paths computed by the two-stage approach are nearly
identical to the optimal solution. Moreover, the two-stage
approach is 30 times faster than the optimal MILP solution,
even on a coarse grid and excluding cases where MILP took
too long.

C. Comparing Robot Designs

Our 3D tests were performed in a hospital infirmary’s
CAD model1 (Figure 8), simplified to 60k triangles using
quadric edge collapse decimation. The method described

1https://grabcad.com/library/hospital-ward-2-2
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Fig. 5: Evaluation results on 25 random 2.5D room. Error bars
denote standard deviation.
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Fig. 6: Towerbot (left) and Armbot (right), mid-disinfection.
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Fig. 7: Performance of robot designs disinfecting an infirmary.

in Section IV-C is configured to use 512x512 resolution
framebuffers for computing irradiances.

We compare three models for the disinfection robot:
“Floatbot“, a freely-moving spherical light source, “Tower-
bot“, a cylindrical mobile base that moves in the plane,
is 55 cm in diameter and 37 cm tall, and has a 1.2 m
tall cylindrical light source attached to its top (Figure 1);
and “Armbot“, a mobile base upon which a UR5e 6-DOF
manipulator is mounted and holds a spherical point light
source, both seen in (Figure 6), with their lamps highlitghted.
Floatbot is an idealized model of maximum performance.
Towerbot is a model for commercially available mobile
disinfection robots (like the Akara Violet and UVD robot’s
Model B and C) 2, while Armbot represents a potential
advancement that can access more hard-to-reach surfaces
than a tower design. All solutions were computed within 50
minutes, with the irradiance matrix calculation taking over
80% of the time on all 3D experiments.

Our experiments designate an irradiation time limit of
Tmax = 30 minutes and 100 hours for evaluating asymp-
totic performance. For vantage point selection, we define a
3D grid with resolution 0.25 m (resulting in 8547 vantage
candidates). We also compare with the strategy of placing
Towerbot in the center of the room for the prescribed
time budgets to mimic the static status-quo. During motion
planning, 4k feasible samples are drawn to create the PRM
(with additional samples added in increments of 20 if full
milestone connectivity is not achieved).

Results are shown in Figure 7. We find that robots
with more freedom to explore the free space, like Armbot
and Floatbot, disinfect a larger area under a given time
budget. Matching experimental results, [7], the status-quo
of stationary placement of Towerbot fails to cover much
of the surface, as illustrated in Figure 1. The asymptotic

2https://www.uvd-robots.com/robots — https://www.akara.ai/violet.html
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Fig. 8: Time lapse of Armbot’s disinfection progress for an infir-
mary within a time budget of 30 minutes. (Best seen in color)

performance is nearly identical among all mobile solutions,
whereas the disinfection efficiency comes with a tradeoff
in total distance travelled, among which Towerbot has the
smallest trajectory length and Armbot has the longest. This
is presumably due to two factors. First, distances in higher
dimensions tend to be higher (3D vs 2D) and, second, motion
planning for Armbot involves many steps that are prone to
sub-optimality, such as vantage configuration selection given
a desired lamp position and high-dimensional multi-query
path planning. Floatbot’s trajectory length is a trivial lower
bound to Armbot’s trajecory length. More details about the
trajectories can be found the attached suplemental video.

VI. CONCLUSION & FUTURE WORK

We presented a targeted approach to solve coverage plan-
ning problems for UV light disinfection. Our optimization
minimizes the disinfection time while ensuring maximum
coverage by imposing constraints of minimal irradiance ex-
posure of surfaces. We show that globally optimal solutions
can be found by solving a NP-hard MILP and propose a two-
stage approximation scheme that can find near optimal solu-
tions with less than 3% sacrifice of optimality while being
orders of magnitude faster. We also confirm real-world exper-
iments [7] that show limitations of stationary UV disinfection
robots. Furthermore, our algorithm is general enough to ana-
lyze different robotic disinfection mechanisms. Code for the
method is available at https://github.com/joaomcm/summer-
2020.

In future work, we would like to analyze the MILP
formulation and its interaction with the continuous path
planning component. Second, we hope to test the proposed
pipeline in a physical system to evaluate how positioning er-
rors from SLAM algorithms and reconstruction errors affect
disinfection performance. Third, our vantage configurations
are sampled along a uniform task space grid, which may not
be the most efficient choice. Finally, we would like to study
how joint optimization of vantage configurations, task-space
points, and paths could yield more efficient traversals.

https://github.com/joaomcm/summer-2020
https://github.com/joaomcm/summer-2020
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